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Embedded systems today come in all shapes and sizes.  Ranging from small 8-bit (sometimes 
8-pin!) devices with as little as 1K of memory, on up to 64-bit multi-gigahertz CPUs, and even 
multi-core versions of the same.  With that comes a similar range of diversity in the systems 
they control.  As a result, there’s just no single operating system solution appropriate for all 
platforms.  Sometimes WinCE works, sometimes Embedded Linux works, sometimes neither 
are appropriate and a smaller, more lean and mean RTOS (real time operating system) is used 
as the basis for an application,  and finally,  in some cases there’s no need for an operating 
system at all.  This paper doesn’t address the embedded operating system issue, there’s plenty 
of text already out there for that.   Rather this paper discusses an option for starting up the 
embedded system prior to running (or even choosing) the embedded OS.  The purpose of this 
paper is to introduce release 1.0 of MicroMonitor (hereon referred to as uMon1.0 or just uMon) 
as  an  embedded  system  boot  platform  for  booting  anything  from  a  standalone  OS-less 
application on up to Embedded Linux.

What is MicroMonitor?

The uMon distribution (as of this writing, uMon1.16) is a package of open-source firmware and 
host-resident tools that build out-of-the box on Linux, Solaris, Windows (Cygwin) and MacOS 
using  GNU  cross-compilation  tools.   The  cross-compiled  uMon  program  installs  on  an 
embedded  system  and  provides  a  “startup”  (or  boot)  environment  that  runs  on  the  target 
hardware prior to starting up the application.  This block of firmware in an embedded system is 
commonly referred to as a boot monitor or boot loader.  Like most boot monitors, it provides the 
ability to peek and poke memory, test memory ranges, transfer files to/from the target system’s 
memory and turn over control to some other application resident on the target system.  This is 
common for most boot monitors that have any sophistication at all.  The uMon boot monitor 
attempts to raise the bar a bit.  It provides all of the above, plus…

• Extensible built-in flash file system (TFS) mappable to NOR flash and/or RAM.
• Support for JFFS2 (NOR) and FAT (SD-Card)
• TFTP client/server for network file transfer
• Xmodem for serial file transfer
• On-board ASCII file creation (i.e. target resident file editor)
• File-based scripts with conditional branching
• ASCII-script-driven startup options
• Command line history and editing
• UDP and RS232 based command entry
• Versatile configuration management using files
• Symbols and shell variables
• Stack trace, runtime profiling and memory-based runtime trace
• Gdb server for application loads and post-mortem analysis
• Network host supporting ICMP and DHCP/BOOTP as a startup option
• Syslog client
• Zlib-based decompression
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• Password-protected user levels
• Large API to hook the application to facilities provided by monitor
• Several demo applications including an LWIP-based HTTP server without any RTOS, 

just using the uMon API hooks.

One important aspect of a boot monitor is it’s “transparency” to the developer.   In other 
words,  it  should  never  hinder  the  development  process.   With that  in  mind,  uMon was 
designed to be very easy to port to new target systems.  It runs without enabling interrupts, 
so aside from basic cpu & memory configuration done at reset, it can be installed on a target 
with a simple polled UART driver.  Then a flash driver and ethernet driver (if applicable) can 
be installed and after that TFS and the network facilities will “just work”.  Another aspect of 
“transparency” is that it provides several hooks (API) to allow the developer to use some of 
uMon’s facilities; however, it does not require that these hooks be used.  Once uMon turns 
over control to the application, the application can choose to use or not use uMon’s API.  In 
several cases, it turns out that uMon’s API is used early in the startup of an RTOS for trace 
and debug, then once the RTOS has completed initialization, RTOS-based facilities override 
the uMon-based hooks.  The point is that the application can choose to use uMon’s API for 
the facilities it provides or it can ignore the fact that uMon is even in the system.

MicroMonitor’s Typical Usage Model

The following paragraphs document a typical usage scenario for an embedded system that 
uses uMon.  

System Startup
The uMon executable resides within the instruction space that the CPU’s reset vector points to. 
The CPU/target system boots uMon first.  The startup code in uMon then does some basic 
initialization of the memory (flash and ram), serial port and ethernet port (if applicable).  Since 
uMon has a file system (Tiny File System: TFS) built in, the startup of a uMon based embedded 
system is very configurable because uMon uses files (see example listing below)  in the file 
system to start up. 

uMON> tfs ls
 Name                        Size   Location   Flags  Info
 monrc                        203  0x103ca64c  e      envsetup
 romfs.img                2216960  0x1008005c
 startlinux                  5041  0x103c923c  e
 zImage                   1228056  0x1029d4bc

Total: 4 items listed (3450260 bytes).
uMON>

This is conceptually similar to the .bashrc or .profile files used to configure the startup of a 
user’s environment on Unix, or the autoexec.bat file used to configure the startup of a DOS 
based machine.  The idea is that this startup file, called monrc (monitor  run  control file), 
allows the user to establish basic configuration of the system.  This typically includes the 
network host information like IP, NetMask, Gateway IP, etc..  Initially, this file can be created 
on board with uMon’s built  in ASCII  file editor,  or it  can be transferred to the target via 
Xmodem or TFTP.  The content  of  the executable  monrc script  should be kept  simple, 
basically used to set up a few shell variables…

uMON> tfs cat monrc
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set ETHERADD 00:23:31:36:00:01
set IPADD 192.168.1.110
set NETMASK 255.255.255.0
set GIPADD 192.168.1.1

Once  the  monrc  file  has  been  executed  (during  uMon’s  internal  startup),  uMon  then 
configures  the  serial  and  ethernet  ports  based  on  the  content  of  a  few  specific  shell 
variables (CONSOLEBAUD, ETHERADD, IPADD, etc…) that are assumed to have been set 
up as a result of the monrc script execution.  For security purposes, this automatic execution 
of  the  monrc  file  is  usually  non-interruptible;  hence,  it  guarantees  some  basic  startup 
configuration will be invoked.  

Now that uMon has initialized itself through the monrc file, it has several different potential 
paths, all of which depend on files in TFS.  If there are no additional “auto-boot” files in TFS, 
then uMon simply sits at the console/network ports waiting for input from the user (either 
from RS-232, ICMP, UDP, GDB or TFTP).  A typical command list dump (output of the ‘help’ 
command) at the uMon console is shown below.

uMON>help

Micro-Monitor Command Set:
arp         call        cast        cm          dhcp        dis
dm          echo        edit        ether       exit        flash
fm          gdb         gosub       goto        heap        help
?           history     icmp        if          item        mt
mtrace      pm          read        reg         reset       return
set         sleep       sm          strace      syslog      ulvl
tftp        tfs         unzip       xmodem      version     ldatags

uMON>

If on the other hand, there are additional “auto-boot” files in TFS, then uMon will execute them in 
alphabetical order.  Typically, only one “auto-boot” after monrc is run (the application); however, 
uMon allows the user to configure this as needed.  For example, it may be appropriate for an 
auto-boot script to first query the network for a server, then if found, download and run some 
application, and if not found, just run some on-board default application (see below).  There are 
all kinds of script-configurable options. 

 1: icmp -v PING_RESULT echo 135.222.140.142
 2: if $PING_RESULT sne ALIVE goto LOCAL_BOOT
 3: echo Attempt network boot...
 4: tftp -Fnet_app -fe 135.222.140.142 get net_app
 5: if $TFTPGET seq \$TFTPGET goto LOCAL_BOOT
 6: net_app
 7: goto DONE
 8:
 9: # LOCAL_BOOT:
10: echo Run local copy of application...
11: local_app
12:
13: # DONE:
14: echo Finished!
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Referring to the listing above, line #1 is uMon’s equivalent of a ping command (icmp echo).  The 
command populates the shell variable PING_RESULT with the string “ALIVE” if the icmp echo 
succeeds.  Line #2 tests to see if the ping succeeded and if not, it causes the script to branch to 
the LOCAL_BOOT tag (line #9).  This simply runs a  locally stored copy of the application called 
“local_app”.  If the test at line #2 finds that the icmp echo succeeded (i.e. $PING_RESULT == 
“ALIVE”) then a TFTP request is sent to a server at 135.222.140.142.  A second test is made 
(line  #5)  to  see if  the  TFTP transfer  succeeded,  if  not,  the  script  once  again  branches  to 
LOCAL_BOOT.  If yes, then it is assumed that the net_app application was transferred to the 
board via tftp and can be run.

The above script is just an example of the versatility that can be scripted into a uMon based 
target startup.

Application Runtime 
So, based on the previous section, the application “somehow” has started up.  The application 
has the option to totally ignore the fact that uMon is installed, or it can choose to connect itself to 
uMon’s API and take advantage of uMon’s console access, TFS, uMon’s heap, environment 
variable access and some of the debugging facilities like memory based runtime-trace.  Plus, 
depending on the CPU, it may be quite convenient to just allow uMon’s exception handlers to 
remain installed so that any erroneous exceptions will be caught and will be traceable (via stack 
trace) when the exception returns control to uMon.

Note that this API discussion assumes that the operating system allows execution of  these 
functions as they exist in the instruction space that uMon was built for.  This means that some 
MMU-based OSes (i.e. Linux) may not be able to access this functionality simply because the 
memory space occupied by uMon is not mapped for execution once the MMU is turned on.

The  console API (mon_putchar(), mon_getchar(), mon_getline() and mon_printf()) allows the 
application to hook to the functions in uMon that support raw and formatted console IO.  

The  command line API (mon_getline(), mon_docommand(), mon_addcommand()) allows the 
application to take advantage of uMon’s entire command line interpreter including the command 
line editing and history.  This allows the application to insert commands into the uMon command 
table at runtime,  present this modified set of commands to the user and execute any of the 
commands in the command table as needed.

The  environment  API (mon_getenv()  and  mon_putenv())  allows  the  application  to  retrieve 
variables that were established prior to the application starting up.  This gives the application the 
ability to retrieve a variety of different things.  For example, the target’s network host information 
(IP, NetMask and Gateway IP addresses).  Also, different portions of the application may have 
need to run in different runtime configurable modes, with the most obvious one being “DEBUG” 
mode.  This mode could be made runtime-settable by simply establishing the DEBUG shell 
variable in monrc at startup, then when the application runs, it can detect the presence of this 
variable and enable its own internal debug flag.

The heap access API (mon_malloc(), mon_free(), mon_realloc()) allows the application to use 
uMon’s heap.  While it isn’t usually a good idea to use malloc/free in an embedded system, 
there are times when you just gotta have it.  The “heap” command at the monitor’s command 
line interface (CLI) also allows the user to display the state and content of the heap.  This allows 
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the user to catch the high-water mark of the allocated space, plus it can be used to debug and 
track down corruption and memory leaks.

The file system API (too many to list) provides the application with easy access to the files in 
TFS so that the application can read/write/modify/create files in several different ways/modes.

The flash API (mon_flashwrite(), mon_flasherase(), mon_flashinfo()) allows the user to modify 
raw flash through a standard API.  uMon’s flash space need not be dedicated entirely to TFS.  It 
can be configured with TFS owning only a portion of the overall flash space; thus allowing the 
application to do whatever it wants to do with some block of flash.  With this configuration, there 
is a use in having application-accessible API to the raw flash.

The runtime trace API (mon_memtrace()) allows a user to insert “printf-like” calls into portions 
of the code that may not be friendly to printf() (i.e. interrupt handlers, etc..).  The formatted string 
is  placed in  a pre-configured buffer  and can be dumped to the console  later  by using the 
“mtrace” command at the uMon command line.

The runtime profiler in uMon allows the application to periodically record the instruction pointer 
of the application and then, some time later, uMon will organize the information logged into a 
statistical, per-function representation of the runtime execution of the application.  This allows 
developers to concentrate on the “heavy hitter” functions in the application.

Application Post Mortem Analysis
uMon supports some post-mortem debug.  For example,  assume the application terminates 
either legally (via mon_appexit()) or illegally (via some exception).   If the application allowed 
uMon to catch the exception,  then uMon’s stack trace facility can be used to determine the 
function nesting at the time of the exception.  All  of the core of the application is still  in the 
memory  space  accessible  by  uMon;  hence,  that  space  can  be  analyzed  with  gdb  or  the 
symbolic capabilities built into uMon.  The basic gdb server built into uMon’s network interface 
supports the “load”  and “c” commands in gdb, plus variables and memory can be dumped using 
gdb’s  symbolic  access  commands  like  “print”.   The  monitor  supports  symbolic  access  of 
variables in the application.  This allows the user to display memory with the command: “dm 
%variable_name” instead of needing to specify the hard address of the variable.  This is done 
through the CLI’s ability to process symbols by looking them up in a “symtbl” file assumed to be 
installed in TFS, plus it doesn’t require any external debugger.

RTOS & CPU Independence

Generally speaking, uMon doesn’t care what RTOS (if any) you incorporate into the application. 
It has been used with Linux, VxWorks, Nucleus, CMX, eCOS, uC/OS-II, pSOS, WinCE, RTEMS 
and standalone (no OS at all).   Obviously the memory map of the application must not conflict  
with that of uMon; however if it does, then just adjust uMon’s memory map.  As far as CPUs, 
well  it’s  almost CPU independent.   It  has ports that run on ARM, Xscale,  MIPS, PowerPC, 
Virtex-PPC,  ColdFire/68K,  Blackfin,  SH,  MicroBlaze  and  NIOS.   Obviously  there  are  limits 
regarding which CPU uMon can run on.  Generally speaking, uMon wants a CPU that supports 
linear address space (no bank switching) and a target that has flash/ram that can support the 
uMon footprint and usually one or the other (or both) of RS-232 and/or Ethernet port.
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For More Information…

As each release of uMon is made available to users, with that comes an update to the user’s 
manual (see pointer below).  The first section of the manual provides the user with a summary 
of the changes between one release and the next.

The MicroMonitor distribution comes as a compressed tar ball (.tgz) file.  It includes the source 
for the host-based tools used, plus the common and port-specific code for a variety of targets. 
In addition, there is a template port directory that can be used as the starting point for a new 
port  (assuming  one  of  the  ports  already  available  isn’t  more  appropriate).    Finally,  the 
distribution comes with a few general examples of applications that can be built to hook up to 
and run on top of a uMon based target.

  
If  the  environment  described  sounds  interesting,  then  refer  to  the  website 
http://www.umonfw.com for a 300+ page user manual and the above mentioned tar ball.  For 
general questions, refer to the documentation or contact the primary author, Ed Sutter, at 
ed.sutter@alcatel-lucent.com.

Ed Sutter is a distinguished member of the technical staff at Alcatel-Lucent Technologies. 
He has written articles for Embedded Systems Programming magazine and Circuit Cellar 
Online, and has authored the book “Embedded Systems Firmware Demystified” published 
by CMP in February 2002.  He is a graduate of the New Jersey Institute of Technology has 
been working with embedded system firmware for over 25 years.
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