
MicroMonitor: An Embedded System Boot Platform

Updated: Jan 6, 2009

Embedded systems today come in all shapes and sizes. Ranging from small 8-bit (sometimes
8-pin!) devices with as little as 1K of memory, on up to 64-bit multi-gigahertz CPUs, and even
multi-core versions of the same. With that comes a similar range of diversity in the systems
they control. As a result, there’s just no single operating system solution appropriate for all
platforms. Sometimes WinCE works, sometimes Embedded Linux works, sometimes neither
are appropriate and a smaller, more lean and mean RTOS (real time operating system) is used
as the basis for an application, and finally, in some cases there’s no need for an operating
system at all. This paper doesn’t address the embedded operating system issue, there’s plenty
of text already out there for that. Rather this paper discusses an option for starting up the
embedded system prior to running (or even choosing) the embedded OS. The purpose of this
paper is to introduce release 1.0 of MicroMonitor (hereon referred to as uMon1.0 or just uMon)
as an embedded system boot platform for booting anything from a standalone OS-less
application on up to Embedded Linux.

What is MicroMonitor?

The uMon distribution (as of this writing, uMon1.16) is a package of open-source firmware and
host-resident tools that build out-of-the box on Linux, Solaris, Windows (Cygwin) and MacOS
using GNU cross-compilation tools. The cross-compiled uMon program installs on an
embedded system and provides a “startup” (or boot) environment that runs on the target
hardware prior to starting up the application. This block of firmware in an embedded system is
commonly referred to as a boot monitor or boot loader. Like most boot monitors, it provides the
ability to peek and poke memory, test memory ranges, transfer files to/from the target system’s
memory and turn over control to some other application resident on the target system. This is
common for most boot monitors that have any sophistication at all. The uMon boot monitor
attempts to raise the bar a bit. It provides all of the above, plus…

• Extensible built-in flash file system (TFS) mappable to NOR flash and/or RAM.
• Support for JFFS2 (NOR) and FAT (SD-Card)
• TFTP client/server for network file transfer
• Xmodem for serial file transfer
• On-board ASCII file creation (i.e. target resident file editor)
• File-based scripts with conditional branching
• ASCII-script-driven startup options
• Command line history and editing
• UDP and RS232 based command entry
• Versatile configuration management using files
• Symbols and shell variables
• Stack trace, runtime profiling and memory-based runtime trace
• Gdb server for application loads and post-mortem analysis
• Network host supporting ICMP and DHCP/BOOTP as a startup option
• Syslog client
• Zlib-based decompression

 1

• Password-protected user levels
• Large API to hook the application to facilities provided by monitor
• Several demo applications including an LWIP-based HTTP server without any RTOS,

just using the uMon API hooks.

One important aspect of a boot monitor is it’s “transparency” to the developer. In other
words, it should never hinder the development process. With that in mind, uMon was
designed to be very easy to port to new target systems. It runs without enabling interrupts,
so aside from basic cpu & memory configuration done at reset, it can be installed on a target
with a simple polled UART driver. Then a flash driver and ethernet driver (if applicable) can
be installed and after that TFS and the network facilities will “just work”. Another aspect of
“transparency” is that it provides several hooks (API) to allow the developer to use some of
uMon’s facilities; however, it does not require that these hooks be used. Once uMon turns
over control to the application, the application can choose to use or not use uMon’s API. In
several cases, it turns out that uMon’s API is used early in the startup of an RTOS for trace
and debug, then once the RTOS has completed initialization, RTOS-based facilities override
the uMon-based hooks. The point is that the application can choose to use uMon’s API for
the facilities it provides or it can ignore the fact that uMon is even in the system.

MicroMonitor’s Typical Usage Model

The following paragraphs document a typical usage scenario for an embedded system that
uses uMon.

System Startup
The uMon executable resides within the instruction space that the CPU’s reset vector points to.
The CPU/target system boots uMon first. The startup code in uMon then does some basic
initialization of the memory (flash and ram), serial port and ethernet port (if applicable). Since
uMon has a file system (Tiny File System: TFS) built in, the startup of a uMon based embedded
system is very configurable because uMon uses files (see example listing below) in the file
system to start up.

uMON> tfs ls
 Name Size Location Flags Info
 monrc 203 0x103ca64c e envsetup
 romfs.img 2216960 0x1008005c
 startlinux 5041 0x103c923c e
 zImage 1228056 0x1029d4bc

Total: 4 items listed (3450260 bytes).
uMON>

This is conceptually similar to the .bashrc or .profile files used to configure the startup of a
user’s environment on Unix, or the autoexec.bat file used to configure the startup of a DOS
based machine. The idea is that this startup file, called monrc (monitor run control file),
allows the user to establish basic configuration of the system. This typically includes the
network host information like IP, NetMask, Gateway IP, etc.. Initially, this file can be created
on board with uMon’s built in ASCII file editor, or it can be transferred to the target via
Xmodem or TFTP. The content of the executable monrc script should be kept simple,
basically used to set up a few shell variables…

uMON> tfs cat monrc

 2

set ETHERADD 00:23:31:36:00:01
set IPADD 192.168.1.110
set NETMASK 255.255.255.0
set GIPADD 192.168.1.1

Once the monrc file has been executed (during uMon’s internal startup), uMon then
configures the serial and ethernet ports based on the content of a few specific shell
variables (CONSOLEBAUD, ETHERADD, IPADD, etc…) that are assumed to have been set
up as a result of the monrc script execution. For security purposes, this automatic execution
of the monrc file is usually non-interruptible; hence, it guarantees some basic startup
configuration will be invoked.

Now that uMon has initialized itself through the monrc file, it has several different potential
paths, all of which depend on files in TFS. If there are no additional “auto-boot” files in TFS,
then uMon simply sits at the console/network ports waiting for input from the user (either
from RS-232, ICMP, UDP, GDB or TFTP). A typical command list dump (output of the ‘help’
command) at the uMon console is shown below.

uMON>help

Micro-Monitor Command Set:
arp call cast cm dhcp dis
dm echo edit ether exit flash
fm gdb gosub goto heap help
? history icmp if item mt
mtrace pm read reg reset return
set sleep sm strace syslog ulvl
tftp tfs unzip xmodem version ldatags

uMON>

If on the other hand, there are additional “auto-boot” files in TFS, then uMon will execute them in
alphabetical order. Typically, only one “auto-boot” after monrc is run (the application); however,
uMon allows the user to configure this as needed. For example, it may be appropriate for an
auto-boot script to first query the network for a server, then if found, download and run some
application, and if not found, just run some on-board default application (see below). There are
all kinds of script-configurable options.

 1: icmp -v PING_RESULT echo 135.222.140.142
 2: if $PING_RESULT sne ALIVE goto LOCAL_BOOT
 3: echo Attempt network boot...
 4: tftp -Fnet_app -fe 135.222.140.142 get net_app
 5: if $TFTPGET seq \$TFTPGET goto LOCAL_BOOT
 6: net_app
 7: goto DONE
 8:
 9: # LOCAL_BOOT:
10: echo Run local copy of application...
11: local_app
12:
13: # DONE:
14: echo Finished!

 3

Referring to the listing above, line #1 is uMon’s equivalent of a ping command (icmp echo). The
command populates the shell variable PING_RESULT with the string “ALIVE” if the icmp echo
succeeds. Line #2 tests to see if the ping succeeded and if not, it causes the script to branch to
the LOCAL_BOOT tag (line #9). This simply runs a locally stored copy of the application called
“local_app”. If the test at line #2 finds that the icmp echo succeeded (i.e. $PING_RESULT ==
“ALIVE”) then a TFTP request is sent to a server at 135.222.140.142. A second test is made
(line #5) to see if the TFTP transfer succeeded, if not, the script once again branches to
LOCAL_BOOT. If yes, then it is assumed that the net_app application was transferred to the
board via tftp and can be run.

The above script is just an example of the versatility that can be scripted into a uMon based
target startup.

Application Runtime
So, based on the previous section, the application “somehow” has started up. The application
has the option to totally ignore the fact that uMon is installed, or it can choose to connect itself to
uMon’s API and take advantage of uMon’s console access, TFS, uMon’s heap, environment
variable access and some of the debugging facilities like memory based runtime-trace. Plus,
depending on the CPU, it may be quite convenient to just allow uMon’s exception handlers to
remain installed so that any erroneous exceptions will be caught and will be traceable (via stack
trace) when the exception returns control to uMon.

Note that this API discussion assumes that the operating system allows execution of these
functions as they exist in the instruction space that uMon was built for. This means that some
MMU-based OSes (i.e. Linux) may not be able to access this functionality simply because the
memory space occupied by uMon is not mapped for execution once the MMU is turned on.

The console API (mon_putchar(), mon_getchar(), mon_getline() and mon_printf()) allows the
application to hook to the functions in uMon that support raw and formatted console IO.

The command line API (mon_getline(), mon_docommand(), mon_addcommand()) allows the
application to take advantage of uMon’s entire command line interpreter including the command
line editing and history. This allows the application to insert commands into the uMon command
table at runtime, present this modified set of commands to the user and execute any of the
commands in the command table as needed.

The environment API (mon_getenv() and mon_putenv()) allows the application to retrieve
variables that were established prior to the application starting up. This gives the application the
ability to retrieve a variety of different things. For example, the target’s network host information
(IP, NetMask and Gateway IP addresses). Also, different portions of the application may have
need to run in different runtime configurable modes, with the most obvious one being “DEBUG”
mode. This mode could be made runtime-settable by simply establishing the DEBUG shell
variable in monrc at startup, then when the application runs, it can detect the presence of this
variable and enable its own internal debug flag.

The heap access API (mon_malloc(), mon_free(), mon_realloc()) allows the application to use
uMon’s heap. While it isn’t usually a good idea to use malloc/free in an embedded system,
there are times when you just gotta have it. The “heap” command at the monitor’s command
line interface (CLI) also allows the user to display the state and content of the heap. This allows

 4

the user to catch the high-water mark of the allocated space, plus it can be used to debug and
track down corruption and memory leaks.

The file system API (too many to list) provides the application with easy access to the files in
TFS so that the application can read/write/modify/create files in several different ways/modes.

The flash API (mon_flashwrite(), mon_flasherase(), mon_flashinfo()) allows the user to modify
raw flash through a standard API. uMon’s flash space need not be dedicated entirely to TFS. It
can be configured with TFS owning only a portion of the overall flash space; thus allowing the
application to do whatever it wants to do with some block of flash. With this configuration, there
is a use in having application-accessible API to the raw flash.

The runtime trace API (mon_memtrace()) allows a user to insert “printf-like” calls into portions
of the code that may not be friendly to printf() (i.e. interrupt handlers, etc..). The formatted string
is placed in a pre-configured buffer and can be dumped to the console later by using the
“mtrace” command at the uMon command line.

The runtime profiler in uMon allows the application to periodically record the instruction pointer
of the application and then, some time later, uMon will organize the information logged into a
statistical, per-function representation of the runtime execution of the application. This allows
developers to concentrate on the “heavy hitter” functions in the application.

Application Post Mortem Analysis
uMon supports some post-mortem debug. For example, assume the application terminates
either legally (via mon_appexit()) or illegally (via some exception). If the application allowed
uMon to catch the exception, then uMon’s stack trace facility can be used to determine the
function nesting at the time of the exception. All of the core of the application is still in the
memory space accessible by uMon; hence, that space can be analyzed with gdb or the
symbolic capabilities built into uMon. The basic gdb server built into uMon’s network interface
supports the “load” and “c” commands in gdb, plus variables and memory can be dumped using
gdb’s symbolic access commands like “print”. The monitor supports symbolic access of
variables in the application. This allows the user to display memory with the command: “dm
%variable_name” instead of needing to specify the hard address of the variable. This is done
through the CLI’s ability to process symbols by looking them up in a “symtbl” file assumed to be
installed in TFS, plus it doesn’t require any external debugger.

RTOS & CPU Independence

Generally speaking, uMon doesn’t care what RTOS (if any) you incorporate into the application.
It has been used with Linux, VxWorks, Nucleus, CMX, eCOS, uC/OS-II, pSOS, WinCE, RTEMS
and standalone (no OS at all). Obviously the memory map of the application must not conflict
with that of uMon; however if it does, then just adjust uMon’s memory map. As far as CPUs,
well it’s almost CPU independent. It has ports that run on ARM, Xscale, MIPS, PowerPC,
Virtex-PPC, ColdFire/68K, Blackfin, SH, MicroBlaze and NIOS. Obviously there are limits
regarding which CPU uMon can run on. Generally speaking, uMon wants a CPU that supports
linear address space (no bank switching) and a target that has flash/ram that can support the
uMon footprint and usually one or the other (or both) of RS-232 and/or Ethernet port.

 5

For More Information…

As each release of uMon is made available to users, with that comes an update to the user’s
manual (see pointer below). The first section of the manual provides the user with a summary
of the changes between one release and the next.

The MicroMonitor distribution comes as a compressed tar ball (.tgz) file. It includes the source
for the host-based tools used, plus the common and port-specific code for a variety of targets.
In addition, there is a template port directory that can be used as the starting point for a new
port (assuming one of the ports already available isn’t more appropriate). Finally, the
distribution comes with a few general examples of applications that can be built to hook up to
and run on top of a uMon based target.

If the environment described sounds interesting, then refer to the website
http://www.umonfw.com for a 300+ page user manual and the above mentioned tar ball. For
general questions, refer to the documentation or contact the primary author, Ed Sutter, at
ed.sutter@alcatel-lucent.com.

Ed Sutter is a distinguished member of the technical staff at Alcatel-Lucent Technologies.
He has written articles for Embedded Systems Programming magazine and Circuit Cellar
Online, and has authored the book “Embedded Systems Firmware Demystified” published
by CMP in February 2002. He is a graduate of the New Jersey Institute of Technology has
been working with embedded system firmware for over 25 years.

 6

mailto:ed.sutter@alcatel-lucent.com
http://www.umonfw.com/

	MicroMonitor: An Embedded System Boot Platform

